pystra.distributions.gev.GEVmax#
- class GEVmax(name, mean, stdv, shape, input_type=None, startpoint=None)[source]#
Bases:
Distribution
Generalized Extreme Value (GEV) distribution for maxima.
This distribution unifies the different types of extreme value distributions: Gumbel (Type I), Fréchet (Type II), and Weibull (Type III).
- Arguments:
name (str): Name of the random variable
mean (float): Mean
stdv (float): Standard deviation
shape (float): Shape parameter. shape < 0.0 is Weibull, shape > 0 is Frechet.
input_type (any): Change meaning of mean and stdv
startpoint (float): Start point for seach
- Raises:
ValueError: If shape is greater than or equal to 0.5
- Notes:
The shape parameter shape must be less than 0.5 for finite variance.
shape < 0 is the Weibull case, shape = 0 is the Gumbel case, and shape > 0 is the Fréchet case.
This distribution is to model maxima.
Methods
Cumulative distribution function
getMean
getName
getStartPoint
getStdv
Compute the Jacobian
Probability density function
Plots the PDF of the distribution
Inverse cumulative distribution function
Return a sample of the distribution of length n
setStartPoint
set_location
set_scale
Transformation from u to x
Transformation from x to u
Attributes
std_normal
- cdf(x)#
Cumulative distribution function
- jacobian(u, x)#
Compute the Jacobian
- pdf(x)#
Probability density function
- plot(ax=None, **kwargs)#
Plots the PDF of the distribution
- ppf(u)#
Inverse cumulative distribution function
- sample(n=1000)#
Return a sample of the distribution of length n
- u_to_x(u)#
Transformation from u to x
- x_to_u(x)#
Transformation from x to u