pystra.analysis.AnalysisOptions#

class AnalysisOptions[source]#

Bases: object

Options

Options for the structural reliability analysis.

Methods

getBlockSize

getDiffMode

getE1

getE2

getFlagSens

getImax

getMultiProc

getPrintOutput

getRandomGenerator

getSamples

Return the number of samples used in MCS

getSimulationCov

getSimulationPoint

getSimulationStdv

getStepSize

getTransform

getffdpara

setBins

setBlockSize

setDiffMode

setE1

setE2

setImax

setMultiProc

setPrintOutput

setSamples

Set the number of samples used in MCS

setStepSize

setTransform

setffdpara

Attributes

transf_type

Type of joint distribution

Ro_method

Method for computation of the modified Nataf correlation matrix

flag_sens

Flag for computation of sensitivities

print_output

Print output to the console during calculation

multi_proc

Amount of g-calls

block_size

Block size

i_max

Maximum number of iterations allowed in the search algorithm

e1

Tolerance on how close design point is to limit-state surface

e2

Tolerance on how accurately the gradient points towards the origin

step_size

Step size

diff_mode

Kind of differentiation

ffdpara

Parameter for computation

samples

Number of samples (MC,IS)

random_generator

Kind of Random generator

sim_point

Start point for the simulation

stdv_sim

Standard deviation of sampling distribution in simulation analysis

target_cov

Target coefficient of variation for failure probability

bins

Amount on bins for the histogram

transf_type#

Type of joint distribution

Type:
  • 1: jointly normal (no longer supported)

  • 2: independent non-normal (no longer supported)

  • 3: Nataf joint distribution (only available option)

Ro_method#

Method for computation of the modified Nataf correlation matrix

Methods:
  • 0: use of approximations from ADK’s paper (no longer supported)

  • 1: exact, solved numerically

flag_sens#

Flag for computation of sensitivities

w.r.t. means, standard deviations, parameters and correlation coefficients

Flag:
  • 1: all sensitivities assessed,

  • 0: no sensitivities assessment

print_output#

Print output to the console during calculation

Values:
  • True: prints output to the console (useful, e.g. spyder),

  • False: does not print out (e.g. jupyter notebook)

multi_proc#

Amount of g-calls

1: block_size g-calls sent simultaneously 0: g-calls sent sequentially

block_size#

Block size

Number of g-calls to be sent simultaneously

i_max#

Maximum number of iterations allowed in the search algorithm

e1#

Tolerance on how close design point is to limit-state surface

e2#

Tolerance on how accurately the gradient points towards the origin

step_size#

Step size

0: step size by Armijo rule, otherwise: given value is the step size

diff_mode#

Kind of differentiation

Type:
  • ‘ddm’: direct differentiation,

  • ‘ffd’: forward finite difference

ffdpara#

Parameter for computation

Parameter for computation of FFD estimates of gradients - Perturbation = stdv/analysisopt.ffdpara

Values:
  • 1000 for basic limit-state functions,

  • 50 for FE-based limit-state functions

samples#

Number of samples (MC,IS)

Number of samples per subset step (SS) or number of directions (DS)

random_generator#

Kind of Random generator

Type:
  • 0: default rand matlab function,

  • 1: Mersenne Twister (to be preferred)

sim_point#

Start point for the simulation

Start:
  • ‘dspt’: design point,

  • ‘origin’: origin in standard normal space (simulation analysis)

stdv_sim#

Standard deviation of sampling distribution in simulation analysis

target_cov#

Target coefficient of variation for failure probability

bins#

Amount on bins for the histogram

getSamples()[source]#

Return the number of samples used in MCS

setSamples(samples)[source]#

Set the number of samples used in MCS